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Abstract
Sucrose, obtained from either sugar beet or sugarcane, is one of the main ingre-
dients used in the food industry. Due to the same molecular structure, chemical
methods cannot distinguish sucrose from both sources. More practical and
affordablemethodswould be valuable. Sucrose samples (cane and beet) were col-
lected fromnine countries, 25% (w/w) aqueous solutionswere prepared and their
absorbances recorded from 200 to 1380 nm. Spectral differences were observable
in the ultraviolet–visible (UV–Vis) region from 200 to 600 nm due to impuri-
ties in sugar. Linear discriminant analysis (LDA), classification and regression
trees, and soft independent modeling of class analogy were tested for the UV–Vis
region. All methods showed high performance accuracies. LDA, after selection
of five wavelengths, gave 100% correct classification with a simple interpretation.
In addition, binary mixtures of the sugar samples were prepared for quantita-
tive analysis by means of partial least squares regression and multiple linear
regression (MLR). MLR with first derivative Savitzky–Golay were most accept-
able with root mean square error of cross-validation, prediction, and the ratio
of (standard error of) prediction to (standard) deviation values of 3.92%, 3.28%,
and 9.46, respectively. UsingUV–Vis spectra and chemometrics, the results show
promise to distinguish between the two different sources of sucrose. An afford-
able and quick analysis method to differentiate between sugars, produced from
either sugar beet or sugarcane, is suggested. This method does not involve com-
plex chemical analysis or high-level experts and can be used in research or by
industry to detect the source of the sugar which is important for some countries’
agricultural policies.
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1 INTRODUCTION

Sugar is one of the crucial components of the confectionery
industry that provides unique multifunctional properties,
such as fermentation substrate, structure, texture, color,
taste, and preservation. Sucrose can be extracted from both
sugar beet and sugarcane. These sources of sucrose are
most affected by geographical location (Sefaoğlu et al.,
2016). Although sugarcane (Saccharumofficinarum) grows
in a tropical climate zone, sugar beet (Beta vulgaris sac-
charifera L.) grows in different climate zones and specif-
ically regions located between 60◦ north and 30◦ south
latitudes. The price of beet and cane sugar depends on sea-
son, year and country of production and countries from
which sugar is imported. Two to four times more sucrose
can be obtained from one decare (100 m2) of sugarcane
compared to sugar beet. Due to this higher yield, the
raw material and production cost of cane sugar are much
lower than that of beet sugar. This makes importing cane
profitable for some countries in the short term.
The climatic conditions prevent the cultivation of sugar-

cane in some countries. Turkey, Russia, Ukraine, Belarus,
and the EU produce sugar from sugar beet, whereas coun-
tries, such as USA, Japan, and China, produce sugar from
both sources. Brazil, India, Thailand, Mexico, Pakistan,
Australia, and several other countries in the middle lati-
tudes produce sugar from sugarcane (Thow et al., 2021).
Also, in some countries, for example, Turkey, there are
governmental policies and regulations that require sugar
production from sugar beet and limits the amount of sugar
to be produced (Sugar Act, 2001). It might not be eco-
nomical to maintain sugar production using sugar beet,
but there are other factors to consider such as foreign
dependency, providing employment opportunities to local
factoryworkers and income opportunities for farmers. Due
to the requirements by policies and regulations, it is impor-
tant to know the source of the sugar present in the market.
In addition, sugar beet producing countries may consider
importing cane sugar rather than producing beet sugar due
to strategic reasons. Conflicts among countries, war, sanc-
tions, and foreign dependency may become important and
as local people are often providing their families with beet
cane crops, it is important to prevent illegal imports of
cane sugar. The need therefore exists for a rapid, easy to
perform, and economical method to distinguish between
sugars produced from either sugar beet or sugarcane.
As beet sugar and cane sugar are completely sucrose-

based, it can be difficult and expensive to detect the source
of the sugar using chemical (Bubnik et al., 1995) and/or
sensory methods (Urbanus et al., 2014). Both these meth-
ods are expensive, require the use of chemicals, extensive
labor, or experts such analytical chemists or trained sen-
sory panelists. When long term and continuous analysis

are considered, development of an alternative method is
important. Even though beet sugar and cane sugar are both
essentially sucrose, there are some detectable differences
depending on the source and manufacturing process. The
total amount of polysaccharides present in sugarcane was
reported as 169 ppm (solids), whereas 77 ppmwas reported
for sugar beet samples. The initial amounts were 8238
and 4067 ppm for cane and beet raw juices, respectively
(Godshall et al., 2002). Similarly, sugarcane juice con-
tained 5% (w/w) non-sugar compounds, whereas sugar
beet juice contained 2.5% (w/w). Finally, the presence of
fibers was reported as 5% (w/w) and 10% for sugar beet
and -cane, respectively (Asadi, 2007). Other markers that
can be used for sugar beet and -cane differentiation is
the presence of raffinose and theanderose. Theanderose is
only present in sugarcane and is considered a natural con-
stituent (Moreldu Boil, 1996). Raffinose is present in both
sugar beet and –cane; however, raffinose levels are higher
in sugar beet sugar compared to -cane (Morel du Boil,
1997; Vaccari &Mantovani, 1995). Despite the difference in
micro-impurities in sugars, the purpose of this work is not
to determine the composition and concentrations of these
impurities, but to classify beet and cane sugars while con-
sidering the diversity of their plant sources and the features
of production technologies.
Optical spectroscopy has been successfully used as an

analytical tool that can largely be attributed to its abil-
ity to provide rapid qualitative and quantitative analysis
of multicomponents in single samples (Manley, 2014). It
can efficiently provide access to various physical, chemi-
cal, and structural properties such as particle size, protein,
starch, moisture, fat, ash content, soluble solids, or acid-
ity in food samples if calibrated appropriately (Bahrami
et al., 2020). Lately, ultraviolet–visible (UV–Vis) spec-
tra, which correspond to the wavelengths 200–800 nm
in the electromagnetic spectrum, have gained increas-
ing interest among food scientists. It has been utilized
for food analysis purposes because of its easy applica-
tion, relatively low equipment costs, andminimum sample
preparation requirements. Methods based on UV spec-
tra have been used for authentication of food materials
and to detect adulteration in several studies (Boggia et al.,
2017; Dankowska & Kowalewski, 2019; Fanelli et al., 2021).
Moreover, implementation of UV spectroscopy for routine
analysis is also possible (Suhandy & Yulia, 2021). There-
fore, optical spectroscopy appears to be a feasible analytical
tool to investigate beet and cane sugar identification.
Optical spectroscopicmethods of analyses produce spec-

tra between 190 and 1100 nm and provide large amounts of
data and information. The obtained data can be exploited
using chemometric techniques, for example, principal
component analysis (PCA) which is an unsupervised pat-
tern recognition technique can be used as a first step for
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3276 SUCROSE FROM SUGAR BEET AND SUGARCANE

explorative data analysis, outlier detection, graphical clus-
tering, and classification (Cortés et al., 2019; Esbensen &
Geladi, 2009). Depending on the objectives of the study,
qualitative and/or quantitative data analysis approaches
are selected. Using pattern recognition techniques, clas-
sifying samples based on their spectra is possible (Roggo
et al., 2007). A training set with known categories is used
to create a classification model, which is then tested on a
test set of unknown samples. In this study, several qualita-
tive and quantitative techniques were used, that is, linear
discriminant analysis (LDA) (Baranowski et al., 2012), clas-
sification and regression trees (CART) (Barbosa et al.,
2014), and soft independent modeling of class analogy
(SIMCA) (Souto et al., 2015). The models’ performance
is usually evaluated by means of sensitivity, specificity,
precision, and accuracy. On the other hand, partial least
squares regression (PLSR) and multiple linear regression
(MLR) (Dankowska et al., 2017) were used for quantita-
tive analysis. The performance of quantitative models is
usually evaluated by means of the root mean square error
of cross-validation (RMSECV), root mean square error of
prediction (RMSEP), and the ratio of (standard error of)
prediction to (standard) deviation (RPD) (Williams, 2014)
values as well as the coefficient of determination (R2).
Generally, a good model should achieve a low root mean
square error (RMSE) and a high R2. Additionally, a sat-
isfactory model should have an RPD value of more than
3.1, a value above 6.5 being very good (Williams, 2014).
This study aimed to investigate the ability of optical spec-
troscopy in association with chemometrics to differentiate
between sucrose samples produced from either sugar beet
or sugarcane.

2 MATERIALS ANDMETHODS

2.1 Materials and chemicals

Different sucrose samples (comprising 23 different brands)
originating from sugarcane and sugar beet plants were
collected from 9 different countries, including Pakistan,
Portugal, Poland, Romania, Italy, Serbia, Belarus, Ukraine,
and Colombia. For classification purposes, only known
source samples and white sugars were used. Brown sug-
ars were not included since their absorbances were not
comparable with that of white sugars.

2.2 Preparation of sucrose solutions for
spectral analysis

For qualification, from every sucrose bag, two or three dif-
ferent 25% (w/w) sucrose solutions were prepared with

deionized water and five replicates from each were taken
for further analysis (n = 235). A 25% aqueous solu-
tion was selected to match the dynamic range of the
spectrophotometer used.
For quantification, selected sucrose samples originating

from beet and cane sugar were mixed at different con-
centrations from 0% (w/w) beet sugar to 100% (w/w) beet
sugar with 5% (w/w) increments. In total, 21 samples were
used to obtain binary mixtures that had a final concen-
tration of 25% (w/w) sucrose. All samples were mixed
properly before adding water because spectroscopic anal-
yses require homogenous samples. After the addition of
water, the samples were stirred for about 10 min in glass
beakers and then placed and scanned in quartz cuvettes
(10 mm path length).

2.3 Spectral data acquisition

Absorbance data were recorded with a UV–Vis-NIR scan-
ning spectrophotometer UV-3101 PC (Shimadzu, Inc.,
Nakagyo-ku, Kyoto 604-8511, Japan) that covered a spec-
tral range from 190 to 3200 nm. For the qualification of beet
and cane sucrose samples, wavelengths ranging from 200
to 1300 nmwere used with 1 nm spectral interval. All mea-
surements were conducted at a slow scan speed, with 1 nm
spectral slit width and 1 nm spectral interval. Each mea-
surement was made after the spectrum of an air reference
was obtained. Spectra were collected in 10 mm path length
quartz cuvettes, and each cuvette was measured only
once.
For quantification, the wavelength range was 200–

600 nm and the spectra recorded with the same spectral
settings as for the qualitative analysis. However, for quan-
tification a cuvette filled with distilled water was placed
in the second beam of the two-beam spectrophotometer as
the reference to remove the effect of the solvent.

2.4 Multivariate data analysis

2.4.1 Preprocessing, exploratory analysis,
and selection of training and test sets

During quantitative model development, different pre-
processing methods, such as mean centering, standard
normal variate (SNV), normalization, Gaussian smooth-
ing, and Savitzky–Golay first (1st Der) and second (2nd
Der) derivatives, were tested. The UV–Vis raw spectra
were preprocessed with the different methods to remove
unwanted variation and artifacts that could be present
in the data. PCA was mainly used for exploratory pur-
poses to interpret and visualize the differences between the
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SUCROSE FROM SUGAR BEET AND SUGARCANE 3277

samples in the multivariate space, with only mean center-
ing applied.
Furthermore, the samples were divided into training

and test sets for both qualitative and quantitative model
development. Selections of samples were performed man-
ually by considering representativeness and leverages.
Subsequently, the brown sugar and all but two powdered
sugars were excluded from the dataset. In total, 124 spectra
(50 cane, 74 beet sugar) were used for classification, with
85 spectra in the training and 39 spectra in the test set,
replicates of each sample were always kept together.
For all classification chemometric analysis, fivefold
cross-validation (CV) was applied to determine model
abilities followed by validation with the independent
test set. For quantification, leave-one-out CV was per-
formed on the calibration set (n = 15) to determine
model parameters followed by independent validation
(n = 6). The preprocessing and data analysis performed
are shown in a chemometric analysis flowchart in
Figure 1.

2.4.2 Qualitative analysis

For classification purposes, the performance of LDA,
CART, and SIMCA was investigated by means of sensitiv-
ity, specificity, precision, and accuracy.
Linear discriminant analysis (LDA): LDA looks for linear

combinations of variables which best explain the differ-
ence between the classes of data. Because LDA works well
with a specific ratio between sample number and variable
number, first, PCA was applied to decrease the number of
factors. This was followed by selection of five wavelengths
based on maximum classification performance.
Classification and regression tree (CART): Decision trees

provide structural mapping that consists of binary selec-
tion (Kotsiantis, 2013). By selecting the variables from
numerous input data, algorithm grows treelike shapes
with root nodes. Any root that is added to the algorithm
is based on an appointed value for one variable, also
called univariate split. These splits are basically thresh-
old values selected from variables, which are used to
differentiate between samples. The main aim of the algo-
rithm is to improve the model performance by adding
one split with the least split numbers possible. For this
study, only two roots were applied on PC1 and PC2
scores.
Soft independent modeling of class analogy (SIMCA):

SIMCA is a method that works with PCA. As SIMCA
operates by applying PCA to the classes separately,
this approach gives more information related to the
classes with reference to separation measures and relation

between different variables (van den Branden & Hubert,
2005). While training each class specific model, residual
distributions of classes are generated. With class specific
distribution, according to their probabilities, observations
are assigned to the mentioned classes. The algorithm
tested different number of PCs and shows which one
gave the maximum sensitivity, specificity, and minimum
error.

2.4.3 Quantitative analysis

Partial least squares regression (PLSR): Similar to PCA,
PLSR also works with components but in this case, they
are called latent variables/factors. Also, in PLSR, while
applying regression for the chosen dataset, X matrix
decomposition is guided by the variance in the y vector
which are target values. Thus, the main purpose is to
increase the covariation between y and X. The basic linear
model can be shown as

𝑦 = 𝑋𝑏 + 𝑒 (1)

where e is the residual, and b is the vector containing coef-
ficients of regression obtained after model calibration. For
this study, different numbers of latent variables (LV) were
evaluated to determine the least number of LVs that would
maximize the models’ ability.
While performing PLSR, the number of LV which cover

the adequate variance of data was kept as low as possi-
ble to achieve high performing predictions. To calculate
the performance of the models, the dataset was split into
two subgroups, that is, training and test sets. Prepro-
cessing methods, spectral regions, and number of factors
were selected by considering minimum RMSECV on cal-
ibration dataset. First, a simple moving window variable
selection was performed manually by considering loading
values then the following method was applied for further
selection.
Searching combination moving window interval’ PLS

(scmwiPLS): Variable selection was done, to eliminate
unnecessary variables, using scmwiPLS (Du et al., 2004).
In this method, after selecting the size of the windows
(number of variables in one window), the algorithm deter-
mines the best combination of windows with the lowest
RMSE. Furthermore, different numbers of windows were
compared and selected according to their performance
result, that is, lowest RMSE. In this study, scmwiPLS was
used to find the combination of informative bands to
increase prediction capability of the PLS model.
Multiple linear regression (MLR): MLR was used to

build a quantification model. Ridge regularization was
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3278 SUCROSE FROM SUGAR BEET AND SUGARCANE

F IGURE 1 Chemometric analysis flowchart. 1st Der, first derivative; 2nd Der, second derivative; CART, classification, and regression
trees; LDA, linear discriminant analysis; MLR, multiple linear regression; PCA, principal component analysis; PLSR, partial least squares
regression; scmwiPLS, searching combination moving window interval PLS; SIMCA, soft independent modeling of class analogy; SNV,
standard normal variate.

TABLE 1 Classification results for the training set with fivefold cross-validation and prediction results of the independent test set.

Training set Sensitivity Specificity Precision Error rate Accuracy
Cane 0.98 0.97 0.96 0.02 0.98
Beet 0.97 0.98 0.99 0.02 0.98
Test set
Cane 1.00 1.00 1.00 0.00 1.00
Beet 1.00 1.00 1.00 0.00 1.00

Note: Sensitivity is the probability of a truly positive test result [ = TP/(TP + FN)]; Specificity is the probability of a truly negative test result [ = TN/(TN + FP)];
Precision is the consistency of the results when measurement is repeated [ = TP/(TP + FP)]; Error rate is the ratio of the number of erroneous units of data to the
total number of units; and Accuracy is the closeness of a measurement to the true value [ = TP + TN/(TP + FP + FN + TN)].
Abbreviations: FN, sugar beet identified as sugarcane; FP, sugarcane identified as sugar beet; TN, sugar beet identified as sugar beet; TP, sugarcane identified as
sugarcane.
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SUCROSE FROM SUGAR BEET AND SUGARCANE 3279

F IGURE 2 Raw absorbance spectra of (a)
the 25 sucrose samples from beet and cane
sugar and (b) after brown sugar samples and
outliers were excluded.

applied to address the multicollinearity problem, since
MLR gives biased prediction results if independent vari-
ables are highly correlated, also selected wavelengths were
tested for model improvement.

2.5 Software and algorithms

PCA was applied using MATLAB R© Release 2022a (The
MathWorks, Inc., Natick, MA, USA). PLS without vari-
able selection and MLR with and without Savitzky–Golay

1st Der and other preprocessing methods were conducted
using Orange (Demšar et al., 2013). ScmwiPLS and all clas-
sification methods were performed with MATLAB. When
performing classification, the ‘classification toolbox’ of
MATLAB was used (Ballabio & Consonni, 2013).

3 RESULTS AND DISCUSSION

Firstly, raw spectra of the sucrose samples from beet
and cane sugar were visually examined, followed by
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3280 SUCROSE FROM SUGAR BEET AND SUGARCANE

F IGURE 3 Principal component analysis
(PCA) (a) score plot and (b) loading spectra for
principal component (PC) 1 and PC 2 of the
different brands of crystalline cane and beet
sugar samples as well as two powdered
samples.

PCA and classification with different chemometric tech-
niques. Then, quantitative regression analysis was con-
ducted on binary mixtures of 25% sucrose solutions
from sugar beet and sugarcane. The results, obtained
after the application of different multivariate analy-
sis methods, were given and evaluated as follows: (1)
absorbances at different wavelengths in the raw spec-
tra, (2) sensitivity and specificity for classification of beet
and cane sucrose samples, and (3) RMSEC, RMSECV,
RMSEP, R2, and RPD values for quantitative regression
analysis.

3.1 Visual interpretation of spectra

As can be seen from Figure 2a, most of the differences
between the sucrose samples were observed in the UV
region of the spectra. However, for some samples the
UV absorbance values were too high for the spectrom-
eter to read as the detector was saturated. Those were
identified as the brown sugar samples, and it can be
explained by the fact that in the UV region, colored com-
pounds are highly absorbed. Parameters such as color,
which are considerably affecting the spectral signatures
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SUCROSE FROM SUGAR BEET AND SUGARCANE 3281

TABLE 2 Regression results.

Calibration set Prediction set
Model

Number of
variables Factors Rc2 RMSEC (%) RMSECV (%) RMSEP (%) RPD

PLSR Full 2 0.98 4.19 5.23 6.46 4.81
PLSR (SG) Full 3 0.98 3.18 4.36 4.44 6.99
PLSR (SG + 1st Der) 60 2 0.99 2.46 3.30 1.90 16.35
scmwiPLSR 21 2 0.99 2.32 4.11 1.88 16.50
scmwiPLSR
(SG + 1st Der)

24 3 0.99 1.80 3.46 0.33 94.01

Linear regression Full – 0.99 1.57 4.77 3.78 8.20
Linear regression
(SG)

Full – 0.99 2.38 4.68 3.68 8.43

Linear regression
(SG + 1st Der)

6 – 0.99 3.38 3.92 3.28 9.46

Abbreviations: PLSR, partial least squares regression; RMSEC, rootmean square error of calibration; RMSECV, rootmean square error of cross-validation; RMSEP,
root mean square error of prediction; RPD, ratio of (standard error of) prediction to (standard) deviation; scmwiPLS, searching combination moving window
interval PLS; SG, Savitzky–Golay.

in the UV region, might also hide valuable information
required to perform accurate classification or regression
analysis. It was decided that such high color deviations
should be excluded from the spectral dataset to differenti-
ate white sucrose samples, from beet and cane sugar, more
effectively. Following exclusion of the brown color sugar
samples, the spectra were evaluated again. There were still
some outliers (Figure 2b), and these were identified as the
finely powdered sugars such as “icing sugar.” During the
production of powdered sugars, different ingredients such
as starch are often added for anticaking purposes, which
may cause hazy sugar solutions (Hollenbach et al., 1982).
The presence of the starch made the solution turbid and
even after waiting a day for starch to precipitate, results
were not promising formost of the samples as the solutions
were still hazy. Only two powdered sugars gave acceptable
absorbance spectra after precipitation and could be kept in
the experimental dataset.

3.2 Classification of beet and cane sugar

At first, it was expected to observe differences in the NIR
region (800–1400), since there are two significant water
absorption bands (980 and 1200 nm) in this region (Palmer
& Williams, 1974). Moreover, from a theoretical point dif-
ferent processing steps and strategies when extracting and
purifying sucrose from their sources might have resulted
in impurities or some molecular changes due to the inter-
action with water. This could cause changes in the water
bands in the NIR region, resulting in spectral signature dif-
ferences. However, the resultant spectra showed that there
was a noticeable difference in the UV range (220–340 nm),

much smaller differences in the visible range, and no clear
differences in the NIR region. It is possible that in the
NIR region, the concentration and type of impurities were
not adequate to be observed in the presence of the solvent
(water) signal, neither did it affect the water bands.
Since beet and cane sugar are chemically similar, and

absorption of impurities present in sugar seemed to be
too low to be detected in the NIR region, measuring from
800 to 1400 nm did not give information which can con-
tribute to classification. It has been shown that evenminor
impurities, and processing differences could contribute to
differentiation between beet and cane sugar (Lu et al.,
2017). In this study, however, it was noted that impurities
could only be observed in the UV region which diversified
the spectra. Even small amounts of non-sugar compounds
such as starch in powdered sugar or color, due to Maillard
reaction, in brown sugar caused significant spectral shifts
in the UV region (Figures 2a and 3a). The cause of spec-
tral differences is most likely due to non-sugar compounds
present in sugar beet or -cane. These could be polysaccha-
rides (Godshall et al., 2002), fibers (Asadi, 2007), raffinose,
and/or theanderose. The amounts of polysaccharides and
fibers found in beet and cane sugar are different. Thean-
derose is only present in cane sugar, and it is considered a
natural constituent (Moreldu Boil, 1996). In beet sugar, raf-
finose levels are higher compared to cane (Morel du Boil,
1997; Vaccari & Mantovani, 1995).
Principal component analysis (PCA): For qualitative

analysis, first PCA was applied to the dataset to detect if
any outliers were present and to see if any data clusters
existed. Principal component (PC) 1 and PC2 explained
98.4% of variance in the dataset which was considered
high. PC3 was not included since its contribution was
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3282 SUCROSE FROM SUGAR BEET AND SUGARCANE

F IGURE 4 (a) Plot of number of
windows, as selected with searching
combination moving window interval’ PLS
(scmwiPLS), versus root mean square error of
prediction (RMSEP) showing lowest RMSEP
(1.88%) with 7 windows and (b) actual sugar
beet sugarcane binary concentration versus
prediction plot with reduced variables.

considerably smaller when compared to that of PC1 and
PC2 and did not provide valuable information in terms
of further classification of the samples. As can be seen
from Figure 3, the PCA scatter plot of PC1 versus PC2
showed differences between sucrose samples from beet
and cane sugar, regions, and brands. Samples collected
from different countries and brands formed small clus-
ters without a specific pattern about their country of
origin. However, samples which belong to the same brand
(each brand has a different shaped marker in the figure)
showed similar PC scores. It was expected since raw
materials that were used for the production of the same

brand most likely underwent similar processing steps
with similar equipment, and the plants sources were
harvested from geographically close regions. Small dis-
tance between the PC scores for similar brand samples
also showed that sampling process was done effectively,
since otherwise some large deviations would have been
observed.
Another observation from the PCA score plot was the

easy detection of the powdered sugars. They were sepa-
rated fromcrystalline samples even if from the same source
(beet and cane sugar). As stated earlier powdered sugars
caused spectral shifts because of the additives present for
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F IGURE 5 Multiple linear regression
actual sugar beet sugarcane binary
concentration versus prediction plot with
Savitzky–Golay first derivative for six moving
window selected wavelengths.

anticaking purposes. This outcome is promising since it
seems likely that one can detect the presence of impuri-
ties or foreign materials added during productions steps
fromUV absorbance spectra. On the other hand, if the goal
is beet or cane differentiation, it can also be a challenge
because if contamination level is high, as it can also mask
the differences caused by sugar source and then separation
by plant type is compromised.However, it is a problem that
can be solved by filtering and decoloring to remove impu-
rities that might affect the UV absorbance spectra drasti-
cally. Moreover, the difference in particle size could have
contributed, but this effect can be reduced with appropri-
ate preprocessing techniques.
PCA loading plots explained the level of importance of

the variables to PC scores. For this study, loadings are basi-
cally linear combination of wavelengths represented by
different PCs (Bro & Smilde, 2014). Here in Figure 3, for
PC1, the most important wavelengths start at 200 nm, and
as thewavelengths increase the loadings decrease. PC3was
not included as the goal of this study was already fulfilled
with PC1 and PC2.
Linear discriminant analysis (LDA): As the first

approach, LDA was selected, since it is one of the sim-
plest chemometric methods that could be applied to a
multivariate dataset. As the name implies, it works with
a linear approach. If it is applied with two variables as in
this case, it is quite intuitive to make comments on the
classification. By applying LDA it was clear that differ-
entiation between groups of sugars was possible (Figure
S1). However, it had some challenges since LDA cannot
be applied for datasets which have a greater number of
variables than the number of samples. Thus, in this study

first it was applied by using score values of the first 2 PCs
as variables (de Luca et al., 2012). Then, it was applied
for five selected wavelengths, that is, 230, 250, 255, 270,
and 320 nm to see if it could easily be applied in industry.
Wavelengths were selected by considering the loadings
given in Figure 3 and classification power results given in
(Figure S2). If one can build a system with less variables,
in this case fewer wavelengths, equipment costs decrease
significantly. For the LDA method, the sensitivity and
specificity values were both 1.00 for the model with five
selected wavelengths.
Classification and regression trees (CART): In CART,

an algorithm determines a threshold that can separate
between two groups and continues in that way. CART was
also tested for all variables (without applying PCA) with
fivefold CV and the results are shown in Table 1. In addi-
tion, two of the beet sucrose sampleswere classified as cane
and only one of the cane sucrose samples were classified
as beet. There was a small error, and it was the only error
for all trials in this study. The results for prediction on the
external set were successful for all test samples, as 100%
correct classification.
Soft independent modeling of class analogy (SIMCA):

SIMCA operates well, even with high number of vari-
ables. The reason that is that SIMCA algorithm applies
PCA to the classes separately thus provides a dimension-
ality reduction. All samples were classified correctly with
specificity and sensitivity of one with fivefold cross val-
idation and separate test set. Figure S2 shows the class
distances of the model and there is a successful separa-
tion for all classes. Those results are also complementary to
the findings with PCA. Classification power of SIMCAwas
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also complementary with the PCA loadings. TheUVwave-
lengths have higher discrimination ability when compared
with visible and NIR regions (Figure S3).

3.3 Quantification of beet and cane
sugar

Raw spectra: For the quantitative regressions, the selected
wavelength range was from 200 to 600 nm since the spec-
tral differences in the NIR region were not observable.
Also, it was observed that after 380 nm, which is the start
of the visible region, there were not observable differences
compared to the shorter UV wavelength regions.
At approximately 270 nm there is a band which was

observed also in the classification measurement (Figure
S3). On the other hand, at approximately 220 nm, spectral
signatures differ in an observable manner. Quantifica-
tion conducted by considering the stated differences with
spectral preprocessing and wavelength selection methods.
Contributions of UV wavelengths to the first PC, which
explained 99.8% of the variance in the dataset, were the
highest. In the following sections some manual wave-
length selections were applied considering the findings in
Figure S3.
Partial least squares regression: Before building PLSR

model, 15 samples were assigned as training and the
remaining 6 a test set by considering leverage points and
reference data distributions. The numbers of LV and other
parameters were decided by assessing leave-one-out CV
applied to the calibration set. And RMSECV (CV on train-
ing data), RMSEP, and RPD were calculated as 5.23%,
6.46%, and 4.81, respectively. Even though the results were
promising, they can be enhanced by applying data prepro-
cessing and variable selection methods of preprocessing
included SNV, normalization, mean centering, Gaussian
smoothing, Savitzky–Golay 1st and 2nd Der were tested to
enhance themodel quality. The best outcomewas obtained
with Savitzky–Golay 1st Der, thus only these results are
discussed.
Application of Savitzky–Golay 1st Der (5 window gap,

second polynomial order) smoothed the data and removed
spectral noise. Results were 4.36%, 4.44%, and 6.99 for
RMSECV, RMSEP, and RPD, respectively. With prepro-
cessing, errors were decreased and RPD was increased
(Table 2). Moreover, the difference between the errors
of calibration and prediction became smaller which con-
tributes to the robustness of the model.
After applying preprocessing, wavelength selection

could be a good option since wavelengths which are not
related with the target outcome can cause incorrect pre-
dictions. After selection of 60 wavelengths, using amoving
window based on loadings, between 240 and 300 nm
the results were 3.30%, 1.90%, and 16.35 for RMSECV,

RMSEP, and RPD, respectively. The RMSECV and RMSEP
decreased and the RPD increased, which showed that pre-
processing and wavelength selection strategies increased
the model capabilities. However, difference between the
calibration and prediction errors was larger. The R2–values
and all RMSE– and RPD–values of the abovementioned
models are given in (Table 2).
When it comes to wavelength selection methods,

scmwiPLS is one of the novel ones. The number of win-
dows selections can be seen in Figure 4. For unprocessed
data, 7 windows were used with 21 wavelengths as win-
dow size and the model was calculated with 2 factors.
For the preprocessed data, 6 windows were used with
24 wavelengths as window size, and the model was cal-
culated with 3 factors. It is a very successful automized
method since one cannot try all combinations by hand
and assess all the results in such short times. To apply the
method, first a PLS without any wavelength selection was
applied, to determine the latent structure number, which
gives minimum RMSECV and then window length was
selected by adding one to the component number. The rea-
son was that after several trials from different datasets,
this application gave the lowest errors and highest RPDs.
scmwiPLSR was successful in terms of predicting the test
samples with an RMSEP of 1.88% and RPD of 16.50 and
with RMSECV of 4.11%. The actual versus prediction plot
is shown Figure 4, showing the good results obtained with
scmwiPLSR.
Results obtained from scmwiPLS can be enhanced with

preprocessing methods. After applying Savitzky–Golay 1st
Der, results were 3.46%, 0.33%, and 94.01 for RMSECV,
RMSEP, and RPD, respectively (Table 2). With preprocess-
ing methods, both errors were decreased. Even though
abilities of recent wavelength selection method were
observed, for this study difference between prediction and
calibration errors was high compared to MLR, which will
be discussed in the next section.
Multiple linear regression (MLR): Linear regression is

a method which works well under well-posed datasets
which have less variables than number of samples
and if multicollinearity does not exist. Regularization
(ridge regression) and wavelength selection methods were
applied to solve ill-posed data problem. Also in this
method, samples were split as validation and calibration
groups then leave-one-out cross validation was applied
on calibration set to decide model parameters. Evaluation
results were 4.77%, 3.78%, and 8.20 for RMSECV, RMSEP,
and RPD, respectively (Table 2). With the application of
Savitzky–Goaly 1st Der, the resultswere slightly betterwith
4.68%, 3.68%, and 8.43 for RMSECV, RMSEP, and RPD,
respectively.
Finally, after applying Savitzky–Goaly 1st Der, six wave-

lengths (226, 227, 228, 229, 230, and 231 nm) were selected
from the UV spectra. The wavelengths were selected based
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on PCA loading results and using moving windowmethod
and for the purpose of easier application of the method.
The results obtained were 3.92%, 3.28%, and 9.46 for
RMSECV, RMSEP, andRPD, respectively.Moreover, actual
concentration versus predicted concentration plot can be
seen in Figure 5. Results for this narrow wavelength range
seemed promising for industrial application. As shown
above, by applying preprocessing andwavelength selection
methods, error difference between test and train datasets
can be decreased since noise and unnecessary spectra can
be excluded from dataset.

4 CONCLUSION

Optical spectroscopy with chemometric methods provided
promising results for many studies in differentiating ori-
gins of food materials. However, to our knowledge, UV
spectroscopy was not studied to test the authenticity of
sucrose sources (sugar beet and sugarcane), which made
current work relevant and important. This study showed
that the UV region of the electromagnetic spectrum was
highly sensitive for impurities that could be used to diver-
sify the sources of sucrose. All supervised classification
methods, including LDA, CART, and SIMCA, showed high
performance to authenticate the source of the sucrose.
Data clusters were obtained for same branded sugars but
not for the same country of origin. In addition to that,
LDA with only five selected wavelengths provided 100%
classification with the simplest interpretation. For regres-
sion analysis, even though PLS gave the highest RPD and
lowest prediction errors, MLRwith Savitzky–Golay 1st Der
preprocessing and the least number of variables gave the
most applicable results with RMSECV, RMSEP, and RPD
as 3.92%, 3.28%, and 9.46, respectively. This indicates the
potential of a simple and easy to use industry approach.
The obtained results seemed promising that the plant
source of sucrose can be differentiated using UV spectra
in association with chemometric methods.
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